
879 Federal Blvd Denver, CO, 80204, US (303) 427-2379

Kaycha Labs

. RAW-ORGFS-CBD Matrix: Concentrate Type: Full Extract Cannabis Oil

Sample:DE31211007-002

Full spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with DAD detection (HPLC-UV). Method SOP.T.90.010.CO for reporting. Lower limit of linearity for all cannabinoids is 1 mg/L

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is a Kaycha Labs certification. The results relate only to the material received or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid or contaminant content of batch material may vary depending on sampling error. ND=Not Detected, NT=Not Tested, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds. The Measurement Uncertainty (UM) error is available from the lab upon request.

Stephen Goldman Lab Director

State License # 405R-00011 405-00008 ISO 17025 Accreditation # 4331.01

RAW-ORGFS-CBD N/A Matrix : Concentrate

Type: Full Extract Cannabis Oil

879 Federal Blvd Denver, CO, 80204, US (303) 427-2379

Certificate of Analysis

TESTED

HempLucid

4844 N. 300 W. Ste. 202 Provo, UT, 84604, US **Telephone:** (385) 203-8556 **Email:** compliance@hemplucid.com License #: 405R-00011

Terpenes

Sample : DE31211007-002 Harvest/Lot ID: OCO2-ODIS-YP5-D401-02423-B1

Batch# : TAC/ECO/SAL/ASP/7500 Sampled : 12/11/23 Ordered : 12/11/23 P5-D401-02423-B1 Sample Size Received : 10 gram Total Amount : 10 gram Completed : 12/15/23 Expires: 12/15/24 Sample Method : SOP Client Method

Page 2 of 7

TESTED

\bigcirc
\mathcal{S}

Ferpenes	LOD (%)	mg/g	%	Result (%)	1	Terpenes		LOD (%)	mg/g	%	Result (%)	
ALPHA-BISABOLOL	0.0020	5.987	0.5987		Ar	nalyzed by:	Weight:	Extraction date:		Ext	racted by:	
BETA-CARYOPHYLLENE	0.0020	2.558	0.2558		66	56, 2494, 2080	0.1726g	12/13/23 09:27:04		28	13,666	
CARYOPHYLLENE OXIDE	0.0020	2.439	0.2439			nalysis Method : SOP-067						
GUAIOL	0.0020	1.805	0.1805			nalytical Batch : DE00690 strument Used : GC 6890		Reviewed On Batch Date : 1				
ALPHA-HUMULENE	0.0020	1.020	0.1020			nalyzed Date : N/A		Batch Date : 1	2/12/23	.1:25:4:	2	
INALOOL	0.0020	<0.200	<0.0200			lution : 40						
2-ETHYL-FENCHOL	0.0020	ND	ND			eagent: 121223.R01						
3-CARENE	0.0020	ND	ND			Consumables : 2210521482; 2014919; 00346491-5; 303122060; 060623CH01						
BISABOLENE	0.0020	ND	ND			pette : POT- 20E73244						
BORNEOL	0.0020	ND	ND			Terpenoid profile screening is performed by GC-FID with liquid injection via SOP-067 (R0) which can sc 28 terpenes.						
CAMPHENE	0.0020	ND	ND									
UCALYPTOL	0.0020	ND	ND									
GERANIOL	0.0020	ND	ND									
SOPULEGOL	0.0020	ND	ND									
IMONENE	0.0020	ND	ND									
MENTHOL	0.0020	ND	ND									
VEROLIDOL	0.0020	ND	ND									
DCIMENE	0.0020	ND	ND									
PULEGONE	0.0020	ND	ND									
TERPINOLENE	0.0020	ND	ND									
ALPHA-PINENE	0.0020	ND	ND									
ALPHA-TERPINENE	0.0020	ND	ND									
ALPHA-TERPINEOL	0.0020	ND	ND									
BETA-MYRCENE	0.0020	ND	ND									
BETA-PINENE	0.0020	ND	ND									
GAMMA-TERPINENE	0.0020	ND	ND									
P-CYMENE	0.0020	ND	ND									

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is a Kaycha Labs certification. The results relate only to the material received or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid or contaminant content of batch material may vary depending on sampling error. ND=Not Detected, NT=Not Tested, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds. The Measurement Uncertainty (UM) error is available from the lab upon request.

Stephen Goldman

State License # 405R-00011 405-00008 ISO 17025 Accreditation # 4331.01

. RAW-ORGFS-CBD N/A Matrix : Concentrate

Type: Full Extract Cannabis Oil

879 Federal Blvd Denver, CO, 80204, US (303) 427-2379

Certificate of Analysis

TESTED

HempLucid

В О

4844 N. 300 W. Ste. 202 Provo, UT, 84604, US Telephone: (385) 203-8556 Email: compliance@hemplucid.com License # : 405R-00011

Pesticides

Sample : DE31211007-002 Harvest/Lot ID: OCO2-ODIS-YP5-D401-02423-B1

Batch#: TAC/ECO/SAL/ASP/7500 Sampled : 12/11/23 Ordered : 12/11/23

Sample Size Received : 10 gram Total Amount : 10 gram Completed : 12/15/23 Expires: 12/15/24 Sample Method : SOP Client Method

Page 3 of 7

PASSED

Pesticide	LOD	Units	Action Level		Result	Pesticide		LOD	Units	Action Level	Pass/Fail	Result
ABAMECTIN	0.0139		100	PASS	ND	HEXYTHIAZOX		0.1977	ppb	10	PASS	ND
AZOXYSTROBIN	0.1122		20	PASS	ND	KRESOXIM-METHYL		0.5115	ppb	150	PASS	ND
BIFENAZATE	0.3285		20	PASS	ND	METHIOCARB		2.3105	ppb	10	PASS	ND
BIFENTHRIN	0.3469 0.3057		1000 20	PASS	ND ND	METHOMYL		0.3790	ppb	25	PASS	ND
BOSCALID CARBARYL	0.3057		50	PASS	ND	METHOPRENE		0.4892	ppb	2000	PASS	ND
CARBARTE	0.2889		40	PASS	ND	MEVINPHOS		0.0432	ppb	25	PASS	ND
CLOTHIANIDIN	0.5370		50	PASS	ND	MGK-264		0.1438	ppb	50	PASS	ND
CYHALOTHRIN-LAMBDA	1.8598		250	PASS	ND	NALED		0.4305	ppb	100	PASS	ND
DICHLORVOS	0.9888		100	PASS	ND	NOVALURON		0.2164	ppb	25	PASS	ND
DIMETHOATE	0.2585	ppb	20	PASS	ND	PHOSMET		0.2483	ppb	20	PASS	ND
DINOTEFURAN	0.4004		100	PASS	ND	OXAMYL		0.3760	ppb	1500	PASS	ND
DIURON	0.7923		125	PASS	ND	PIPERONYL BUTOXIDE		0.3284	ppb	1250	PASS	14.4821
ETOXAZOLE	0.1839		20	PASS	ND	PACLOBUTRAZOL		1.4227	ppb	10	PASS	ND
IMAZALIL	0.4019		50	PASS	ND	PIRIMICARB		0.3458	ppb	10	PASS	ND
IMIDACLOPRID	0.2650		20	PASS	ND	PHENOTHRIN		0.3060	ppb	50	PASS	ND
MALATHION	0.3036 0.2756		20 20	PASS	ND ND	PRALLETHRIN		0.6623	ppb	50	PASS	ND
METALAXYL MYCLOBUTANIL	0.2730		20	PASS	ND	PROPOXUR		0.7835	ppb	10	PASS	ND
PERMETHRINS	0.2109		500	PASS	ND	PRYRACLOSTROBIN		0.2379	ppb	10	PASS	ND
PROPICONAZOLE	0.5658		100	PASS	ND	PYRETHRINS		0.1810	ppb	50	PASS	ND
PYRIPROXYFEN	0.8551		10	PASS	ND	PYRIDABEN		0.2980	ppb	20	PASS	ND
SPINOSADS	0.0545	ppb	100	PASS	ND	RESMETHRIN		0.2008	ppb	50	PASS	ND
SPIROMESIFEN	0.2912	ppb	3000	PASS	ND	SPINETORAM		0.1177	ppb	10	PASS	ND
SPIROTETRAMAT	0.4266		20	PASS	ND	SPIRODICLOFEN		0.1830	ppb	250	PASS	ND
TEBUCONAZOLE	0.3302		50	PASS	ND	SPIROXAMINE		0.3745	ppb	100	PASS	ND
THIABENDAZOLE	0.8056		20	PASS	ND	TEBUFENOZIDE		0.2154	nnh	10	PASS	ND
THIAMETHOXAM	0.3232		20	PASS	ND	TEFLUBENZURON			ppb	25	PASS	ND
ACEPHATE	0.2755 0.2707		50 30	PASS	ND ND	TETRACHLORVINPHOS		0.1330	nnh	10	PASS	ND
ACEQUINOCYL ACETAMIPRID	0.2250		50	PASS	ND	TETRAMETHRIN		0.2380	ppb	100	PASS	ND
ALDICARB	0.4206		500	PASS	ND	THIACLOPRID		0.3999	ppb	10	PASS	ND
ALLETHRIN	0.3601	ppb	100	PASS	ND	THIOPHANATE-METHYL		1.2413	ppb	50	PASS	ND
ATRAZINE	1.0640		25	PASS	ND	TRIFLOXYSTROBIN		0.1938	ppb	10	PASS	ND
AZADIRACHTIN	1.1979	ppb	500	PASS	ND	CHLORPHENAPYR		0.4120	ppb	1500	PASS	ND
BENZOVINDIFLUPYR	0.3651	ppb	10	PASS	ND	ENDOSULFAN SULFATE		0.4196	ppb	2500	PASS	ND
BUPROFEZIN	0.3000		20	PASS	ND	ENDOSULFAN-ALPHA		0.5956	ppb	2500	PASS	ND
CARBOFURAN	0.3317		10	PASS	ND	ENDOSULFAN-BETA		0.5555	ppb	2500	PASS	ND
CHLORANTRANILIPROLE	0.4629		20	PASS	ND	ETRIDIAZOLE		1.2221	ppb	150	PASS	ND
CLOFENTEZINE	0.3505		10 10	PASS	ND ND	FENTHION		0.3118	ppb	10	PASS	ND
COUMAPHOS	0.2529 0.5411		10	PASS	ND	IPRODIONE		0.2738	ppb	500	PASS	ND
CYANTRANILIPROLE CYFLUTHRIN	0.6072		200	PASS	ND	KINOPRENE		1.7294	ppb	1250	PASS	ND
CYPERMETHRIN	0.3065		300	PASS	ND	PARATHION-METHYL		0.2709	ppb	50	PASS	ND
CYPRODINIL	0.4377		10	PASS	ND	QUINTOZENE		0.2693	daa	20	PASS	ND
DAMINOZIDE	4.9907	ppb	100	PASS	ND			0.1000	ppb	100	PASS	ND
DELTAMETHRIN	0.8431	ppb	500	PASS	ND	OTHER PESTICIDES				100		
DIAZINON	0.2055	ppb	20	PASS	ND		Weight: 0.2055g	Extraction (12/11/23 14			Extracted by 2319	:
DIMETHOMORPH	0.1014	ppb	50	PASS	ND	Analysis Method : SOP-060 (R5)	0.20009	12/11/25 14	.45.55		2515	
DODEMORPH	0.2713		50	PASS	ND	Analytical Batch : DE006889PES			Revie	wed On :12/14/2	23 13:01:04	
ETHOPROPHOS	0.4738	T T T	10	PASS	ND	Instrument Used : Sciex 7500 Qtrap "Ha	ades" - Pesticides		Batcl	Date:12/11/23	11:39:42	
FIPRONIL	0.2707	ppb	10	PASS	ND	Analyzed Date : N/A						
ETOFENPROX	0.4114		50	PASS	ND	Dilution : 20 Reagent : N/A						
FENHEXAMID	0.9450	T T T	125	PASS	ND	Consumables : N/A						
FENOXYCARB	0.4316		20 20	PASS	ND ND	Pipette : N/A						
FENPYROXIMATE	0.3098 0.3684		20	PASS	ND ND	Pesticide screen is performed using LC-MS	S which can screen down	to below sing	le digit ppb conce	ntrations for regul	lated Pesticides via	a SOP-060 (R5).
FENSULFOTHION FENVALERATE	0.5684		100	PASS	ND							
FENVALERATE	0.3493		25	PASS	ND							
FLUDIOXONIL	0.2632		10	PASS	ND							
FLUOPYRAM	0.3817		10	PASS	ND							
	0.0027											

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is a Kaycha Labs certification. The results relate only to the material received or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid or contaminant content of batch material may vary depending on sampling error. ND=Not Detected, NT=Not Tested, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds. The Measurement Uncertainty (UM) error is available from the lab upon request.

Stephen Goldman Lab Director

State License # 405R-00011 405-00008 ISO 17025 Accreditation # 4331.01

. RAW-ORGFS-CBD N/A Matrix : Concentrate Type: Full Extract Cannabis Oil

TESTED

879 Federal Blvd Denver, CO, 80204, US (303) 427-2379

Certificate of Analysis

HempLucid

4844 N. 300 W. Ste. 202 Provo, UT, 84604, US Telephone: (385) 203-8556 Email: compliance@hemplucid.com License # : 405R-00011

Sample : DE31211007-002

Batch#: TAC/ECO/SAL/ASP/7500 Sampled : 12/11/23 Ordered : 12/11/23

Harvest/Lot ID: OCO2-ODIS-YP5-D401-02423-B1 Sample Size Received : 10 gram Total Amount : 10 gram Completed : 12/15/23 Expires: 12/15/24 Sample Method : SOP Client Method

Page 4 of 7

Residual Solvents

Solvents	LOD	Units	Action Level	Pass/Fail	Result			
PROPANE	4.2142	ppm	1000	PASS	ND			
BUTANES	5.4680	ppm	1000	PASS	ND			
METHANOL	1.2786	ppm	600	PASS	<3.8360			
PENTANES	6.6710	ppm	1000	PASS	ND			
ETHANOL	2.7010	ppm	1000000	PASS	579.2927			
ACETONE	1.7080	ppm	1000	PASS	10.2586			
2-PROPANOL	1.5875	ppm	1000	PASS	ND			
IEXANES	1.9279	ppm	60	PASS	ND			
ETHYL ACETATE	2.7921	ppm	1000	PASS	ND			
BENZENE	0.4749	ppm	2	PASS	ND			
IEPTANE	3.2594	ppm	1000	PASS	ND			
TOLUENE	2.1088	ppm	180	PASS	ND			
YLENES	7.1150	ppm	430	PASS	ND			
analyzed by: 666, 2494, 2080	Weight: 0.1334g	Extraction date: 12/11/23 12:02:36			Extracted by: 2494			
Analysis Method : SOP.T.40.049.CO Analytical Batch : DE006886SOL Instrument Used : GC 5890 Analyzed Date : 12/11/23 14:59:45	Reviewed On: 12/12/23 11:41:50 Batch Date: 12/11/23 07:53:46							

Reagent : 111823.R01; 120923.R01

Consumables : 23133; R2017.100; N/A; 61892-307C6-307E Pipette : P10- MU13938; P1000- 22C52450

Residual solvents screening is performed using GCwhich can detect below single digit ppm concentrations. Currently we analyze for 15 Residual solvents.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is a Kaycha Labs certification. The results relate only to the material received or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid or contaminant content of batch material may vary depending on sampling error. ND=Not Detected, NT=Not Tested, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds. The Measurement Uncertainty (UM) error is available from the lab upon request.

Stephen Goldman Lab Director

State License # 405R-00011 405-00008 ISO 17025 Accreditation # 4331.01

Signature 12/15/23

PASSED

879 Federal Blvd Denver, CO, 80204, US (303) 427-2379

Certificate of Analysis

HempLucid

4844 N. 300 W. Ste. 202 Provo, UT, 84604, US Telephone: (385) 203-8556 Email: compliance@hemplucid.com License # : 405R-00011

Sample : DE31211007-002 Harvest/Lot ID: OCO2-ODIS-YP5-D401-02423-B1

Batch# : TAC/ECO/SAL/ASP/7500 Sampled : 12/11/23 Ordered : 12/11/23

Sample Size Received : 10 gram Total Amount : 10 gram Completed : 12/15/23 Expires: 12/15/24 Sample Method : SOP Client Method

Page	5	of	
гауе	J	UI	

Ç	Microbi	al			PAS	SED	သို့
Analyte		LOD	Units	Result	Pass / Fail	Action Level	Analyte
	N PRODUCING A COLI STEC			Not Present	PASS		AFLATOXINS
SALMONELL	A SPECIES			Not Present	PASS		AFLATOXIN
ASPERGILLU	IS FLAVUS			Not Present	TESTED		AFLATOXIN
ASPERGILLU	IS FUMIGATUS			Not Present	TESTED		AFLATOXIN
ASPERGILLU	IS NIGER			Not Present	TESTED		OCHRATOXI
ASPERGILLU	IS TERREUS			Not Present	TESTED		Analyzed by:
TOTAL AERO	DBIC	10	cfu/g	ND	PASS	10000	2791, 2, 2080
TOTAL E CO	LI	10	cfu/g	ND	PASS	100000	Analysis Meth
Analyzed by: 5, 2, 2080	Weight: 4.64g	Extraction 12/11/23	on date: 3 12:11:32		xtracted by 215,5	y:	Analytical Bat Instrument Us
Analysis Meth	od : SOP.T.40.057.CO	SOP.T.40.2	09.CO				Analyzed Date
	ch : DE006887MIC ed : Microbial - Full Pa	nel		ed On : 12/14/23 ate : 12/11/23 0			Dilution : 20 Reagent : N/A

Analyzed Date : 12/11/23 12:24:50

Dilution : N/A

Reagent : 112223.R13; 110123.R16; 120723.R05; 111523.R09; 121023.R11; 112923.R17; 121123.R12; 111723.R10; 112723.R14; 120623.R03; 121023.02; 110823.01; 093023.01; 100223.02; 101122.02; 030123.01; 020723.01

Consumables : 61842-014C6-014H; 41171-135C4-135AI; 060623CH01; 4190-0010; 211016-687-A; 1; DR 20230612_CatNo.1193A96; 2; 00112; 01859; CH_2242419; 3; 4; 41141-130C4-130D; 5; 40960-040C4-040AL; CJ209G2; 6; 7; P1000160; 8; MSB1001; RB-1050; 09498; 210712-598-D; 9

 Pipette: M. - 048453j; M. - L47149j; M. - 20F92851; M. - MV21601; M. - MU03680; M. - M32141C;
 M. - 20C40454; M. - 22G22702; M. - 6537603; M. - MU06201; M. - N65633K; M. - K94440L; M. 20E73249; M. - G19154L; M. - P67199j; M. - Q29305K; M. - Q36416j; M. - J46789j; M. - J55715j; M. -O52710K: M - N1563K: M - O34081K

2		,							
Analyte				LOD	Unit	s Result	Pass / Fail	Action Level	
AFLATOXINS	6			0.0539	ppb	ND	PASS	20	
AFLATOXIN	B1			0.1530	ppb	ND	PASS	20	
AFLATOXIN	B2			0.0823	ppb	ND	PASS	20	
AFLATOXIN	G1			0.0539	ppb	ND	PASS	20	
AFLATOXIN	G2			0.2270	ppb	ND	PASS	20	
OCHRATOXII	N A+			0.0117	ppb	ND	PASS	20	
Analyzed by: 2791, 2, 2080		Weight: 0.2055g						by:	
Analytical Bate Instrument Use	ch : DE00 ed : Scie>	6903MYC	Felicia" - N	4ycotoxir					1
	AFLATOXINS AFLATOXIN AFLATOXIN AFLATOXIN AFLATOXIN OCHRATOXI Analyzed by: 2791, 2, 2080 Analyzical Bati Instrument Us	Analyte AFLATOXINS AFLATOXIN B1 AFLATOXIN B1 AFLATOXIN G1 AFLATOXIN G1 AFLATOXIN G2 OCHRATOXIN A+ Analyzed by: 2791, 2, 2080 Analysis Method : SOP- Analytical Batch : DE00	Analyte AFLATOXINS AFLATOXIN B1 AFLATOXIN B1 AFLATOXIN B2 AFLATOXIN G1 AFLATOXIN G1 AFLATOXIN G2 OCHRATOXIN A+ Analyzed by: 2791, 2, 2080 Analysis Method : SOP-060 (RS) Analytical Batch : DE006903MYC Instrument Used : Sciex 6500 Qtrap "	AFLATOXINS AFLATOXIN B1 AFLATOXIN B2 AFLATOXIN G1 AFLATOXIN G1 AFLATOXIN G2 OCHRATOXIN A+ Analyzed by: Weight: Extract 0.2055g 12/12/ Analysis Method : SOP-060 (R5) Analytical Batch : DE006903MYC Instrument Used : Sciex 6500 Qtrap "Felicia" - 1	Analyte LOD AFLATOXINS 0.0539 AFLATOXIN B1 0.1530 AFLATOXIN B1 0.1530 AFLATOXIN B2 0.0823 AFLATOXIN G1 0.0539 AFLATOXIN G2 0.2270 OCHRATOXIN A+ 0.0117 Analyzed by: Weight: Extraction date: 2791, 2, 2080 0.2055g 12/12/23 19:15 Analysis Method : SOP-060 (R5) Analytical Batch : DE006903MYC Instrument Used : Sciex 6500 Qtrap "Felicia" - Mycotoxiri	Analyte LOD Unit AFLATOXINS 0.0539 ppb AFLATOXIN B1 0.1530 ppb AFLATOXIN B2 0.0823 ppb AFLATOXIN G1 0.0539 ppb AFLATOXIN G2 0.2270 ppb AFLATOXIN G2 0.2270 ppb OCHRATOXIN A+ 0.0117 ppb Analyzed by: Weight: Extraction date: 2791, 2, 2080 0.2055g 12/12/23 19:15:33 Analysis Method : SOP-060 (R5) Analytical Batch : DE-0060903MYCC Instrument Used : Sciex 6500 Qtrap "Felicia" - Mycotoxins	Analyte LOD Units Result AFLATOXINS 0.0539 ppb ND AFLATOXIN B1 0.1530 ppb ND AFLATOXIN B2 0.0823 ppb ND AFLATOXIN G1 0.0539 pb ND AFLATOXIN G2 0.2270 ppb ND AFLATOXIN A+ 0.0117 ppb ND Analyzed by: Weight: Extraction date: E 2791, 2, 2080 0.2055g 12/12/23 19:15:33 2 Analysis Method : SOP-060 (R5) Analytical Batch : DE006903MYC Reviewed On Instrument Used : Sciex 6500 Qtrap "Felicia" - Mycotoxins Batch Date :	Analyte LOD Units Result Pass / Fail AFLATOXINS 0.0539 ppb ND PASS AFLATOXIN B1 0.1530 ppb ND PASS AFLATOXIN B2 0.0823 ppb ND PASS AFLATOXIN G2 0.2270 ppb ND PASS AFLATOXIN G2 0.2270 ppb ND PASS OCHRATOXIN A+ 0.0117 ppb ND PASS Analyzed by: Weight: Extraction date: Extracted 2319 Analysis Method : SOP-060 (RS) Analytical Batch : DE006903MYC Reviewed On: 12/15/2 Batch Date : 12/12/23 Instrument Used : Sciex 6500 Qtrap "Felicia" - Mycotoxins Batch Date : 12/12/23 Batch Date : 12/12/23	Analyte LOD Units Result Pass / Fail Action Level AFLATOXINS 0.0539 ppb ND PASS 20 AFLATOXIN B1 0.1530 ppb ND PASS 20 AFLATOXIN B2 0.0823 ppb ND PASS 20 AFLATOXIN G1 0.0539 pb ND PASS 20 AFLATOXIN G2 0.2270 ppb ND PASS 20 AFLATOXIN A2 0.0117 ppb ND PASS 20 AFLATOXIN A4 0.0117 ppb ND PASS 20 Analyzed by: Weight: Extraction date: Extracted by: 2319 Analyzical Batch : 05060903MYC .20050903MYC Reviewed On : 12/15/23 15:49:4 Batch Date : 12/12/23 17:37:27 Batch Date : Sciex 6500 Qtrap "Felicia" - Mycotoxins Reviewed On : 12/12/23 17:37:27 Batch Date : 12/12/23 17:37:27

Dilution: 20 Reagent : N/A Consumables : N/A

Pipette : N/A

Aflatoxins B1, B2, G1, G2, and Ochratoxin A testing using LC-MS via SOP-060 (R5). Total Aflatoxins (Aflatoxin B1, B2, G1, G2) must be $< 20\mu g/Kg$. Ochratoxins must be $< 5\mu g/Kg$.

Heavy Metals PASSED Hg

Metal		LOD	Units	Result	Pass / Fail	Action Level
ARSENIC		0.0048	ppm	ND	PASS	0.2
CADMIUM		0.0016	ppm	<0.0049	PASS	0.2
MERCURY		0.0008	ppm	ND	PASS	0.1
LEAD		0.0039	ppm	0.0390	PASS	0.5
Analyzed by: 666, 2992, 2080	Weight: 0.2047g	Extraction da 12/11/23 15:			Extracte 666	d by:
Analysis Method : SOI Analytical Batch : DEC Instrument Used : Shi	06885HEA madzu 2030 ICP-M	S "RUMPEL"		ed On : 12/2 Date : 12/11	,	
Analyzed Date : 12/11	/23 16:00:42					

Dilution: 50

Reagent: 120823.R01; 041723.04; 120623.R05; 120623.R06; 052923.01; 091823.01; 120523.R01; 112223.01; 120523.R07 Consumables : 23133; 11922032; 060623CH01; 234422

Pipette : P10- MU13938; HEA-19H16763; P100- 22G19745

Heavy Metals screening is performed using ICP-MS (Inductively Coupled Plasma - Mass Spectrometer) which can screen to below single digit ppb concentrations for regulated heavy metals using method SOP.T.40.081.CO. Sample preparation for Heavy Metals Analysis via SOP.T.30.081.CO.

Stephen Goldman Lab Director

State License # 405R-00011 405-00008 ISO 17025 Accreditation # 4331.01

Signature 12/15/23

Kaycha Labs RAW-ORGFS-CBD

N/A Matrix : Concentrate Type: Full Extract Cannabis Oil

.

Mvcotoxins

TESTED

PASSED

879 Federal Blvd Denver, CO, 80204, US (303) 427-2379

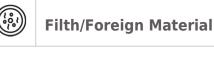
Certificate of Analysis

HempLucid

4844 N. 300 W. Ste. 202 Provo, UT, 84604, US Telephone: (385) 203-8556 Email: compliance@hemplucid.com License # : 405R-00011

Harvest/Lot ID: OCO2-ODIS-YP5-D401-02423-B1 Batch#: TAC/ECO/SAL/ASP/7500

PASSED


Sample Size Received : 10 gram Total Amount : 10 gram Completed : 12/15/23 Expires: 12/15/24 Sample Method : SOP Client Method

Sample : DE31211007-002

Sampled : 12/11/23 Ordered : 12/11/23

Page 6 of 7

Analyte		LOD	Units	Result	P/F	Action Leve		
Filth and Foreign Mat	0.300	0 detect/g	ND	PASS	0.9			
Analyzed by: N/A				Extracted by: N/A				
Analysis Method : N/A								
Analytical Batch : N/A		Rev	iewed On:1	2/12/23 08:	59:21			
Instrument Used : N/A		Bat	ch Date : N/A					
Analyzed Date : N/A								
Dilution : N/A								
Reagent : N/A								
Consumables : N/A								
Pipette : N/A								

This includes but is not limited to hair, insects, feces, packaging contaminants, and manufacturing waste and by-products. An SH-2B/T Stereo Microscope is use for inspection.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is a Kaycha Labs certification. The results relate only to the material received or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid or contaminant content of batch material may vary depending on sampling error. ND=Not Detected, NT=Not Tested, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds. The Measurement Uncertainty (UM) error is available from the lab upon request.

Stephen Goldman Lab Director

State License # 405R-00011 405-00008 ISO 17025 Accreditation # 4331.01

Signature 12/15/23

Kaycha Labs

RAW-ORGFS-CBD N/A Matrix : Concentrate Type: Full Extract Cannabis Oil

.

TESTED

RAW-ORGFS-CBD N/A Matrix : Concentrate Type: Full Extract Cannabis Oil

879 Federal Blvd Denver, CO, 80204, US (303) 427-2379

Certificate of Analysis

TESTED

HempLucid

4844 N. 300 W. Ste. 202 Provo, UT, 84604, US Telephone: (385) 203-8556 Email: compliance@hemplucid.com License #: 405R-00011 Sample : DE31211007-002 Harvest/Lot ID: OCO2-ODIS-YP5-D401-02423-B1 Batch# : Sample Size Recei

TAC/ECO/SAL/ASP/7500 Sampled : 12/11/23 Ordered : 12/11/23 P5-D401-02423-B1 Sample Size Received : 10 gram Total Amount : 10 gram Completed : 12/15/23 Expires: 12/15/24 Sample Method : SOP Client Method

Page 7 of 7

COMMENTS

* Cannabinoid DE31211007-002POT

1 - Measurement Uncertainty for delta-9 THC (wt%, Concentrate) 95% interval : 0.07, Measurement Uncertainty for THCA (wt%, Concentrate) 95% interval : 0.05

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is a Kaycha Labs certification. The results relate only to the material received or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid or contaminant content of batch material may vary depending on sampling error. ND=Not Detected, NT=Not Tested, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds. The Measurement Uncertainty (UM) error is available from the lab upon request.

Stephen Goldman

State License # 405R-00011 405-00008 ISO 17025 Accreditation # 4331.01