

Kaycha Labs

RAW-ORGFS-CBDA N/A

Matrix: Concentrate

Batch#: 2022-26

Sample:DE20401013-003 Harvest/Lot ID: UA-OCO2-YP5-24621-1382F Seed to Sale# 1A4000B00010D25000001410 Batch Date: 09/03/21 Sample Size Received: 6 ml Total Weight/Volume: N/A Retail Product Size: 1 gram ordered : 03/30/22 sampled : 03/30/22 Completed: 04/07/22

of Analysis

Certificate

Apr 07, 20 License # 4 4844 N. 300 W. S Provo, UT, 84604	022 He 05R-0001 ote. 202 , US	mplucid				hemp					Sar	npling	Meth PA Pag	e 1 (DP-02
PRODUCT IMAGE	SAFETY RESULTS	Hg Heavy Metals PASSED	Microbials PASSED	Mycotoxi	ns Residua PA	als Solvents	Fith NOT TESTED	Water	Activity	Mc	isture TESTED	Homog	S geneity ESTED	Ter TES	ISC.
Å Canı	nabinoid												P	ASS	SEC
	Total TH	c 72%	ET	The second second	Total (46.	св р 476	9%	Kun	7		Tota 54	al Can 1.32	nabine 202	oids	
TOTAL 9(N-5)- HHC CBDV % ND ND mgmd ND ND LOD 0.21 0.021 % % %	CEDVA C60 NO NO NO NO NO NO NO NO NO NO NO NO NO NO	CBD CBDA 21.3274 26.495 21.2274 26.495 21.2274 26.495 21.2274 26.495 20.00123136 0.00123136	ТИСУ СВСА НО 0.312 НО 2.322 НО 2.325 0.0205805 0.03192419 % %	CEN EXC 0.1424 0.33 1.424 0.33 1.424 3.50 0.00133157 0.00 % %	5-mc cabo 974 NO 74 NO 9601072 0.014 %	D9-THC 1.4229 1.429 1.439 1.	DB-THC CBL ND ND ND ND	THCVA ND ND 0,000717378 %	CBC 1.0268 10.268 10.0282534 %	В10-ТНС ND 0.000334 %	CENA ND NO 0.00010194 %	THCA 0.3158 3.158 0.000058461 %	CECA 1.075 10.75 0.00210199 %	CBLA ND NO 000116619 %	THC-0- ACETATE ND 0.003403 5
Cannabinoid Profile	e Test				X		X		Ĺ	X	\bigcirc		\wedge		
Analyzed by 1843		Weight 0.1195g		Extraction 04/04/22 1	n date : 1:04:45						Extra 8	acted By :			
Analysis Method -SOP-0 Analytical Batch -DE003	20 (R15) 209POT Instrum	ent Used : Agilent	Review 1100 "Liger" Ru	ed On - 04/05 nning On : 04	5/22 14:21:38 4/04/22 17:07	:43		Ň	Batch	Date : 04	1/03/22 11	:21:47			
Dilution : 200 Reagent : 032822.14; 032	2422.R06; 033122.R0)2; 022222.R02; 0401	22.R12; 040422.01	100.224422	5070 52506 5	5255, 21062	2 699				\setminus /				

Full spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with DAD detection (HPLC-UV). Method SOP-022 (R13) for reporting. Lower limit of linearity for all cannabinoids is 1 mg/L

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request.The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Stephen Goldman Lab Director

4

Signature

04/07/22

State License # 405R-00011 405-00008 ISO Accreditation # 4331.01

879 Federal Blvd Denver, CO, 80204, USA Kaycha Labs

RAW-ORGFS-CBDA N/A Matrix : Concentrate

PASSED

Page 2 of 4

Certificate of Analysis

Hemplucid

4844 N. 300 W. Ste. 202 Provo, UT, 84604, US Telephone: 7192318261 Email: sarah@hemplucid.com License #: 405R-00011 Sample : DE20401013-003 Harvest/Lot ID: UA-OC02-YP5-24621-1382F Batch# : 2022-26 Sample Size R Sampled : 03/30/22 Total Weight/\ Odered : 03/30/22 Completed : 04

5-24621-1382F Sample Size Received : 6 ml Total Weight/Volume : N/A Completed : 04/07/22 Expires: 04/07/23 Sample Method : SOP-024

TESTED

Terpenes

Terpenes	LOD(%) mg/ml	%	Result (%)	erpenes		LOD(%)	mg/ml % Result (%)
ALPHA-PINENE	0.002	ND	ND	1				
CAMPHENE	0.002	ND	ND		α			
BETA-PINENE	0.002	ND	ND		QOD	Terpenes		TESTED
MYRCENE	0.002	ND	ND		\mathcal{C}			110
DELTA-3-CARENE	0.002	0.214	0.0214	P	nalvzed by	Weight	Extraction date	Extracted By
ALPHA-TERPINENE	0.002	ND	ND	1	.843	0.1195g	04/04/22 05:04:35	1642
P-CYMENE	0.002	ND	ND		nalucia Mat	had COD 067 (DO)		
LIMONENE	0.002	ND	ND	1	nalytical Ba	atch - DE003215TER	Reviewed	On - 04/06/22 13:49:36
EUCALYPTOL	0.002	ND	ND	i	nstrument U	Jsed : GC 6890		
CIS-OCIMENE	0.002	ND	ND	F	tunning On :	: 04/05/22 15:57:58		
GAMMA-TERPINENE	0.002	ND	ND	¢	atch Date :	04/04/22 16:57:07		
TERPINOLENE	0.002	ND	ND		Vilution , 40			
LINALOOL	0.002	0.23	0.023		Reagent : 040	122 B12: 012721 05		
(-)-ISOPULEGOL	0.002	ND	ND		Consumables :	: 1154419: 304015242: 1221	11-108CC-108: 24169051: 0029	1464
BORNEOL	0.002	ND	ND	1	erpenoid prof	file screening is performed b	y GC-FID with liquid injection vi	a SOP-067 (R0) which can screen for 28
MENTHOL	0.002	ND	ND	t	erpenes.			
ALPHA-TERPINEOL	0.002	<0.2	<0.02					
PULEGONE	0.002	ND	ND	j.				
GERANIOL	0.002	ND	ND					
2-ETHYL-FENCHOL	0.002	ND	ND					
BETA-CARYOPHYLLENE	0.002	9.721	0.9721					
HUMULENE	0.002	4.505	0.4505					
BISABOLENE	0.002	ND	ND					
NEROLIDOL	0.002	0.507	0.0507	i i				
(-)-CARYOPHYLLENE OXIDE	0.002	5.811	0.5811					
(-)-GUAIOL	0.002	5.966	0.5966					
(-)-ALPHA-BISABOLOL	0.002	22.351	2.2351					
()								
			_		_			
								<u> </u>
Total (%)		4	1.9305					

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements, Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request.The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Stephen Goldman

State License # 405R-00011 405-00008 ISO Accreditation # 4331.01

4 a

Signature

04/07/22

Denver, CO, 80204, USA

Kaycha Labs

RAW-ORGFS-CBDA N/A Matrix : Concentrate

PASSED

Page 3 of 4

PASSED

л

Hemplucid

4844 N. 300 W. Ste. 202

Telephone: 7192318261

License # : 405R-00011

Email: sarah@hemplucid.com

Provo, UT, 84604, US

Residual Solvents

Certificate of Analysis

Sample : DE20401013-003

Batch# : 2022-26

Sampled : 03/30/22

Odered : 03/30/22

Harvest/Lot ID: UA-OCO2-YP5-24621-1382F

Sample Size Received : 6 ml

Completed : 04/07/22 Expires: 04/07/23

Total Weight/Volume : N/A

Sample Method : SOP-024

Solvent	LOD	Units	Action Level	Pass/Fail	Result
PROPANE	4.21421	ppm	1000	PASS	ND
ETHYL ACETATE	2.79218	ppm	1000	PASS	61.2555
BUTANES	15.794	ppm	1000	PASS	ND
BENZENE	0.47491	ppm	2	PASS	ND
METHANOL	1.27868	ppm	600	PASS	17.2174
HEPTANE	3.25945	ppm	1000	PASS	ND
PENTANES	13.828	ppm	1000	PASS	ND
TOLUENE	2.10881	ppm	180	PASS	ND
XYLENES	7.115	ppm	430	PASS	ND
ETHANOL	2.70106	ppm	1000000	PASS	2308.0377
ACETONE	1.708	ppm	1000	PASS	8.9921
2-PROPANOL	1.58756	ppm	1000	PASS	16.1775
HEXANES	1.92798	maa	60	PASS	ND

Analyzed by	Weight	Extraction date	Extracted By	
1843	0.1474g	04/04/22 09:04:44	666	
Analysis Method -SOP-032	(R18)			
Analytical Batch -DE00320	3SOL	Rev	iewed On - 04/04/22 16:11:50	
Instrument Used : GC 5890)			
Running On :				
Batch Date : 04/01/22 09:5	5:56		$\mathbf{Y} = \mathbf{V} + $	
Dilution : 1				

Reagent: 030422.R01; 040122.R05

Consumables : 210316-361-B; 24160453; 33120320183106; 61596-112C6-112E Residual solvents screening is performed using GCwhich can detect below single digit ppm concentrations. Currently we analyze for 15 Residual solvents.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is In the report shain not be reproduced, unless in its entrety, without written approval mon kaycha tabs. In steport is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by the variable of the second activities of the second an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request.The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Stephen Goldman

Lab Director State License # 405R-00011 405-00008 ISO Accreditation # 4331.01

4 C

Signature

04/07/22

Denver, CO, 80204, USA

Kaycha Labs

RAW-ORGFS-CBD/ N/A Matrix : Concentrate

PASSED

Page 4 of 4

PASSED

Certificate of Analysis

Hemplucid

A

4844 N. 300 W. Ste. 202 Provo, UT, 84604, US Telephone: 7192318261 Email: sarah@hemplucid.com License # : 405R-00011

Sample : DE20401013-003 Harvest/Lot ID: UA-OCO2-YP5-24621-1382F Batch# : 2022-26 Sampled : 03/30/22

PASSED

Odered : 03/30/22

Sample Size Received : 6 ml Total Weight/Volume : N/A Completed : 04/07/22 Expires: 04/07/23 Sample Method : SOP-024

15 g	Microbials		
nalyte	$\overline{\langle }$	LOD	
OTAL YEAST	AND MOLD	100	

nalyte		LOD	Result	Pass / Fail
OTAL YEAST AND MOLI	D	100	ND	PASS
HIGA TOXIN PRODUCIN	IG ESCHERICHIA	1	ND	PASS
ALMONELLA SPECIES		1	ND	PASS
IICROBIALS		10	ND	PASS

Analysis Method -SOP-061 (R2); SOP-062 (R2); SOP-063 (R1) Analytical Batch -DE003214MIC Batch Date : 04/04/22 13:03:45 Instrument Used : Microbial - Full Panel Running On : 04/05/22 15:57:23

Analyzed by	Weight	Extraction date	Extracted By
1843	1.5g	04/07/22 10:04:42	5

Dilution: 1

Reagent: 020122.R10; 031022.R11; 033022.R06; 032922.R01; 040422.R07; 031622.R01; 022122.R11; 032322.R01; 091421.R01; 021022.02; 110821.04; 110821.02; 030322.01; 022522.04; 121521.31; 031522.R20; 032222.01; 033022.R11; 032822.05; 040422.R14; 040522.R03; 032822.06 Consumables : 16564-106C6-106H; 40898-021C4-021AI; 12211-108CC-108; 210622-688; CBJA91005; 1; NT10-1212; 00105; 01860; CH_2144311; 2; 3; 4

Microbiological testing for Fungal and Bacterial Identification via Polymerase Chain Reaction (PCR) methods and plating methods. If a pathogenic Escherichia Coli (STEC) or Salmonella is detected in 1g of a sample, the sample fails the microbiological-impurity testing.

Hg	Heavy	Metals
----	-------	--------

\rightarrow					
	LOD	Unit	Result	Pass / Fail	Action Level
	0.002	ppm	0.011	PASS	0.2
	0.001	ppm	ND	PASS	0.2
	0.003	ppm	ND	PASS	0.1
	0.01	ppm	<0.03	PASS	0.5
		LOD 0.002 0.001 0.003 0.01	LOD Unit 0.002 ppm 0.001 ppm 0.003 ppm 0.01 ppm	LOD Unit Result 0.002 ppm 0.011 0.001 ppm ND 0.003 ppm ND 0.01 ppm <0.03	LODUnitResultPass / Fail0.002ppm0.011PASS0.001ppmNDPASS0.003ppmNDPASS0.01ppm<0.03

Analyzed by	Weight	Extraction date	Extracted By
1843	0.2139g	04/04/22 12:04:08	666

Analysis Method -SOP-050 (R5)

Analytical Batch -DE003210HEA | Reviewed On - 04/06/22 09:21:06 Instrument Used : Shimadzu 2030 ICP-MS

Running On : | Batch Date : 04/04/22 08:29:26

Dilution: 50

A c м Ú.

Reagent: 082721.13; 032822.R02; 032822.R01; 062121.04; 071620.05; 032822.R17

Consumables : 210316-361-B; 040CB-040D; 12265-116CC-116; 234422

Heavy Metals screening is performed using ICP-MS (Inductively Coupled Plasma Mass Spectrometer) which can screen to below single digit ppb concentrations for regulated heavy metals using method SOP-050 (R5). Sample preparation for Heavy Metals Analysis via SOP-050 (R5).

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is In the report shain not be reproduced, unless in its entrety, without written approval mon kaycha tabs. In steport is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by the variable of the second activities of the second an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request.The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Stephen Goldman

Lab Director State License # 405R-00011 405-00008 ISO Accreditation # 4331.01

4A

Signature

04/07/22